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ABSTRACT The effect of sequence heterogeneity on polynucleotide translocation across a pore and on simple models of
molecular motors such as helicases, DNA polymerase/exonuclease, and RNA polymerase is studied in detail. Pore
translocation of RNA or DNA is biased due to the different chemical environments on the two sides of the membrane, whereas
the molecular motor motion is biased through a coupling to chemical energy. An externally applied force can oppose these
biases. For both systems we solve lattice models exactly both with and without disorder. The models incorporate explicitly the
coupling to the different chemical environments for polymer translocation and the coupling to the chemical energy (as well as
nucleotide pairing energies) for molecular motors. Using the exact solutions and general arguments, we show that the
heterogeneity leads to anomalous dynamics. Most notably, over a range of forces around the stall force (or stall tension for DNA
polymerase/exonuclease systems) the displacement grows sublinearly as tm, with m , 1. The range over which this behavior
can be observed experimentally is estimated for several systems and argued to be detectable for appropriate forces and
buffers. Similar sequence heterogeneity effects may arise in the packing of viral DNA.

INTRODUCTION

The dynamics of many single molecule experiments can be

described in terms of a ‘‘particle’’ moving along a one-

dimensional substrate. For example, polymer translocation

through a narrow pore can be parameterized by the number of

monomers threaded through the pore. The motion of

molecular motors such as kinesins, dyneins, myosin, helicase,

DNA polymerase, exonuclease, and RNA polymerase can be

described by the location of the motor on the one-dimensional

substrate (microtubules, actin filaments, DNA, and mRNA)

on which they move. Similarly, the packing of a newly

replicated DNA or RNA in viruses may be described by the

molecular weight of the packed genome. These systems have

been a subject of much experimental (Bates et al., 2003;

Henrickson et al., 2000; Howard, 2001; Kasianowicz et al.,

1996; Maier et al., 2000; Meller, 2003; Meller et al., 2001;

Smith et al., 2001; Visscher et al., 1999; Wang et al., 1998;

Wuite et al., 2000;) and theoretical attention (Bhattacharjee

and Seno, 2003; Bustamante et al., 2001; Chuang et al., 2002;

Fisher and Kolomeisky, 1999; Flomenbom and Klafter, 2003,

2004; Goel et al., 2003; Jülicher et al., 1997; Jülicher and

Bruinsma, 1998; Kolomeisky and Fisher, 1999; Lattanzi and

Maritan, 2001a,b; 2002; Lubensky and Nelson, 1999;

Magnasco, 1993; Muthukumar, 2001; Prost et al., 1994;

Sung and Park, 1996; Zandi et al., 2003).

Under most conditions, the motion of the coordinate

describing the system is biased in one direction. The bias in

the case of molecular motors and packing of newly replicated

viral genomes is due to a chemical process such as ATP (or

more generally, NTP) hydrolysis, whereas for polymer

translocation it can be generated by the different chemical

environments on the two sides of the pore. For translocating

single-stranded DNA, such a bias could be provided by

adding, for example RecA (Hegner et al., 1999) or other

single-stranded binding proteins (which do not pass through

the pore) to the solution on one side of the membrane.

Single-molecule experiments allow another source of bias to

be introduced into the system, namely an externally applied

force F. This has been done, for example, by attaching a bead

to a molecular motor (Visscher et al., 1999) or to the end of

the genome that is packed into the viruses (Smith et al.,

2001) and pulling on it using optical tweezers. Similarly,

charged polymers have been translocated using an externally

applied electric field (Meller et al., 2001). An interesting

variant on these experiments is the single-molecule measure-

ments of Wuite et al. (2000) on DNA polymerase, which

converts NTPs (nucleotide triphosphates) into a ligated chain

of nucleotides via complementary basepairing (Maier et al.,

2000). Wuite et al. apply a force F# not to the motor itself,

but instead across the ends of the ssDNA/dsDNA complex to

create a tension across the substrate on which the molecular

machine operates. Beyond a critical tension F#c of order of

40 pN, the motor goes backward and turns into an

exonuclease. The severe stretching of the backbone of the

complementary DNA strand for F#.F#c presumably makes

further conversion of NTPs unfavorable and causes removal

of nucleotides by the motor to be favored. Forward and

reverse motion of this enzyme are believed to be associated

with different active sites (Doublié et al., 1998).

Most theoretical treatments of these systems have as-

sumed homogeneous (or at least periodic) systems. In-

dependent of the microscopic details, such problems can be
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described at long times by a random walker moving along

a tilted potential or, equivalently, a biased random walker.

For molecular motors such as kinesins, dyneins, or myosins,

the assumption of homogeneity is indeed, in most experi-

ments, entirely appropriate. However, in other cases the

motion is along a one-dimensional disordered substrate. This

is the case, for example, for RNA polymerases, exonuclease

and DNA polymerases, helicases, the motion of ribosomes

along mRNA, the translocation of RNA or DNA through

a pore, and the packing of a viral genome. In all these

systems, the one-dimensional substrate reflects the hetero-

geneity of DNA or RNA, and leads to a modification of the

coarse-grained effective potential in which the random

walker describing the system moves. The potential now

depends in a complicated way on the location along the

substrate. Two examples of potential energy landscapes of

particular interest to us here are random energy and ran-

dom forcing energy landscapes. We define a random energy

landscape to be any effectively one-dimensional potential

with a mean slope and fluctuations in the value of the

potential with a finite variance about this linear tilt. A

random forcing energy landscape has an overall mean slope

but with energy fluctuations that are themselves described by

a random walk. In this case, the energy fluctuations about

a linear tilt grow as the square root of the distance along the

substrate. These two types of energy landscapes have been

studied in detail in the statistical mechanics literature

(Bouchaud et al., 1990; Derrida, 1983) and lead to strikingly

different long time dynamics. In particular, the random

forcing energy landscape leads to behavior quite different

from diffusion with drift when the overall tilt of the

landscape is small, as discussed in detail below.

Recently, the effect of disorder in the form of defect sites

in a ratchet model that locally reverse the bias of molecular

motors has been considered (Harms and Lipowsky, 1997),

using the methods of Jülicher et al. (1997). It was suggested

that even though fluctuations in the microscopic potential are

bounded, the resulting effective energy landscape is random

forcing. Specifically, it was argued that when the defect

concentration was large enough, anomalous random force

dynamics would appear. As pointed out in Lubensky and

Nelson (2002), heterogeneity in basepairing energies also

leads to a random force landscape in the context of DNA

unzipping.

In this article we study the effect of sequence heteroge-

neity in both polymer translocation and molecular motors in

detail for an exactly solvable class of simple lattice models.

We consider both systems in the context of single-molecule

experiments that apply an external force pulling back on the

polymer or the motor, which in the absence of this force are

biased to move in one direction. We introduce microscopic

models for both systems that can be solved exactly both with

and without disorder. A generalization of our motor model,

discussed in ‘‘Experimental Considerations’’ and Appendix

D, can also be used as a very simple model of the DNA

polymerase/exonuclease experiments of Wuite et al. (2000).

One can also consider closely related models of the packing

of a viral genome. In this case there is an extra source of bias

due to the energetic cost of packing the DNA inside the

virus. The externally applied force acts in conjunction with

this bias whereas the motor acts against both. The details are

very similar to the cases discussed here, with the exception

that the energy cost of forcing the DNA into the capsid does

not necessarily vary strictly linearly with the amount of DNA

that has entered. We do not include a separate discussion of

this interesting system.

We show that sequence heterogeneity of single-stranded

DNA or RNA and heterogeneous basepairing energies have

a dramatic effect on the dynamics of both systems. For

a homogeneous substrate and no chemical bias, the average

velocity changes monotonically through zero as the external

force is varied, changing sign as the force reverses direction

(see Fig. 1 a). When a chemical bias (which we take to act in

the direction opposing the force) is present, the scenario is

similar with the velocity changing sign at a stall force, Fs,

which depends on the degree of chemical bias (see Fig. 1 b).

In contrast, the combination of a disordered substrate and

a chemical bias produces very different behavior for both

systems. In this case we show that generically, disorder

introduces a random forcing effective energy landscape,

which is responsible for the anomalous dynamics. Similar to

FIGURE 1 Schematic behavior of the drift velocity at long times for

homogeneous and heterogeneous systems as a function of the applied force,

where a positive force resists the chemically favored direction of motion. It is

assumed that chemical forces (such as ATP hydrolysis or chemical binding

on one side of a pore) lead to a positive velocity in the absence of a force. (a)

No externally applied chemical bias (Dm¼ 0). (b) A finite chemical bias (Dm

. 0), where the shaded line corresponds to homogeneous or periodic

environments and the solid line refers to heterogeneous environments. The

anomalous dynamics (Æx(t)æ ; tm, with m , 1) arises in the vicinity of what

would be the stall force, Fs, for the homogeneous system. For F,
c , F ,F.

c ;

the effective velocity depends on the width of the time averaging window,

and tends to zero as the width of the window goes to infinity. The dashed line

denotes the region where anomalous diffusion is also present.
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the observation of Harms and Lipowsky (1997), a random

forcing landscape is generated even if we neglect an explicit

contribution (Lubensky and Nelson, 2002) from random

basepairing energies. We discuss three different dynamical

regimes that arise due to this landscape as the externally

applied force is varied. The most notable transition arises in

the velocity of the random walker describing the system.

Specifically, we find that there are critical values of the force

F.
c and F,

c such that for any force between these values, the

velocity is zero in the sense that the average particle position

Æx(t)æ, where Æ. . .æ denotes an average over thermal

fluctuations, increases as a sublinear power of time. We

also discuss an even broader range of forces where the

diffusion is anomalous (see Fig. 1 b). The transition points

between the different types of long time dynamics can be

calculated exactly for the simple models studied here.

Under special conditions, a random energy landscape is

also possible. In this case the expected behavior as a function

of force is similar to a homogeneous system: The potential

fluctuations simply renormalize the drift velocity and

diffusion constant at long times. That is, as the applied force

is varied, the behavior is similar to that of a homogeneous

system with no chemical bias. Provided that random

contributions to the energy landscape not associated with

simple conversion of chemical energy can be neglected,

random energy models describe the dynamics in the absence

of chemical bias (see Fig. 1 a) on heterogeneous substrates.

An alternative way to observe the anomalous dynamics is

by holding the external force constant and varying the

chemical bias. This can be done by changing the con-

centration of, say, nucleotide triphosphates for molecular

motors, or by changing the concentration of the polymer-

binding protein in one chamber for polymer translocation

experiments. In this case, when the force is held at zero, the

velocity changes monotonically in tandem with the chemical

bias (see Fig. 2 a). However, when the external force is held

constant at a nonzero value, a region with anomalous

dynamics appears as the chemical bias is varied (see Fig. 2

b). Between two values of the chemical bias Dm,
c and Dm.

c ;
the displacement of the particle with time is again sublinear,

in contrast to the same experiment performed on a homoge-

neous substrate. As illustrated in Fig. 2 b, the velocity is then

a monotonic function of the chemical bias, changing sign at

a stalling chemical bias Dms. A summary of the qualitative

behavior of the velocity as function of both the chemical bias

Dm and the external force F is shown in Fig. 3. It is worth

noting that there is no region of sublinear displacement when

Dm ¼ 0 because the energy landscape is then random energy

rather than random forcing, whereas when F ¼ 0, there is

still a random forcing landscape everywhere except exactly

at stalling, but the randomness is too small in the vicinity of

Dm ¼ 0 to cause anomalous dynamics.

To keep the discussion simple, Fig. 3 neglects contribu-

tions to a random forcing landscape other than those

produced by the simple conversion of chemical energy

along an inhomogeneous track. Additional random forcing

contributions will arise from, e.g., basepairing energies in the

case of helicases, which open up DNA strands or DNA

polymerases and exonucleases, which add or delete com-

plementary basepairs. Motors, such as RNA polymerases

and ribosomes, produce trailing strands of mRNA and

FIGURE 2 Schematic behavior of velocity for homogeneous and

heterogeneous systems as a function of the chemical bias Dm. (a) No

externally applied force. (b) A finite externally applied force for

homogeneous (shaded line) and heterogeneous (solid line) substrates. The

anomalous dynamics arises in the vicinity of what would be the stall

chemical bias, Dms, for the homogeneous system. As in Fig. 1, the dashed

line denotes the region where anomalous diffusion is present.

FIGURE 3 Dependence of the velocity on the chemical bias Dm and the

external force F. We neglect for simplicity contributions to a random force

landscape (such as fluctuations in basepairing energies) that may be present

even for Dm¼ 0. Here it is assumed that the chemical bias always acts in the

direction opposing the force. The black wedge denotes a region of sublinear

drift with time, i.e., effectively zero velocity.

Dynamics of Molecular Motors and Polymer 3375

Biophysical Journal 86(6) 3373–3391



protein, respectively. Since these products are themselves

heteropolymers, composed of monomers that interact dif-

ferently with the solvent, here too we would expect addi-

tional contributions to a random forcing landscape. Such

effects will only accentuate the anomalous dynamics, which

is the subject of this article.

Before concluding this introduction, we should emphasize

our perspective on the models of polynucleotide trans-

location and molecular motors studied here. In an effort to

obtain simple, soluble models that incorporate heterogeneity,

we intentionally neglect important molecular details such

as those that describe the detailed pore interactions of the

translocating nucleotides or distinguish the biological role of

motors such as helicases, DNA polymerase and exonu-

cleases, RNA polymerases, etc. The motors mentioned above

perform important specialized functions such as opening

double-stranded DNA, polymerization and depolymeriza-

tion, or creating messenger RNA while moving along

heterogeneous tracks. Such functions are incorporated into

our model simply by adding an explicit (position-dependent)

chemical force to the energy landscape. More sophisticated

attempts to get molecular details right (see, e.g., Goel et al.,

2003; Simon et al., 1992; and Betterton and Jülicher, 2003)

serve a valuable purpose, which can be important for

modeling some aspects of the dynamics on various time-

scales. However, incorporation of sequence heterogeneity,

neglected in most previous modeling efforts, is nevertheless

crucial to correctly describe the anomalous long time

dynamics (e.g., Æx(t)æ ; tm with m , 1) near the stall forces

in these systems. Otherwise, we expect simple diffusion with

drift (similar to what we find here for homogeneous models

or a random energy landscape) at long times. We do not

expect the multiple intermediate states and numerous rate

constants of more sophisticated models to change our

predictions of heterogeneity-induced anomalous dynamics

at long times.

The article is organized as follows: In the next section, to

establish notation and provide a context for the rest of the

article, we discuss the homogeneous models for polymer

translocation and molecular motors is some detail. Then

the effect of heterogeneity on the energy landscape is

introduced. ‘‘Dynamics in Heterogeneous Environments’’

discusses the resulting dynamical behavior and the exact

location of the transition points within the models. Finally,

‘‘Experimental Considerations’’ estimates the experimental

range over which the anomalous dynamics may be observed

for a few representative biological systems and discusses the

effect of finite time experiments on the shape of the velocity-

force curve.

HOMOGENEOUS MODELS

Before turning to heterogeneous systems, we first define

microscopic models for both homogeneous polymer trans-

location and molecular motors. The simplicity of both

models allows for their exact solution. Dynamics in

heterogeneous systems will be treated in ‘‘The Effect of

Heterogeneity on the Energy Landscape’’ and ‘‘Dynamics in

Heterogeneous Environments’’.

Polymer translocation

An idealized experimental setup is shown schematically in

Fig. 4. A polymer is threading through a narrow pore located

on a two-dimensional membrane that separates two chemi-

cally distinct solutions. For concreteness we consider the

right side as containing a polymer-binding protein that is

absent in the left-hand side. In addition, a bead, through

which a resisting force is exerted on the polymer, is connected

to the left end of the polymer. A model of this kind has been

discussed by P. Nelson (Nelson, 2003) as a simple example of

stochastic ratchet-like dynamics in biological systems (see

also Peskin et al., 1993). Alternatively a force could be

applied via an external electric field acting across the pore on

a charged polymer (Kasianowicz et al., 1996).

A convenient representation of the system is through

a one-dimensional random walker located at a coordinate x
that represents the length of the polymer that has translocated

to the right-hand side. The conditions under which the full

three-dimensional, multispecies problem can be simplified

are reviewed below. The dynamics of the random walker is

governed by the interaction of the polymer with the pore, the

binding of the protein in the right chamber, and the

externally applied force.

Before turning to a specific microscopic model, consider

the general form of the potential experienced by the random

walker due to all these interactions. Because we neglect

sequence heterogeneity in this section, the energy due to

interactions with the pore, U(x), is some periodic function

with a period given by the size of a monomer. An example is

the sawtooth or ratchet potential shown in Fig. 5 a. This type

FIGURE 4 Schematic picture of the polymer translocation experimental

setup considered. A polymer is biased to move through the pore by a solution

of binding proteins in the right chamber. A bead exerts a force in the

opposite direction. The arrows reflect the lack of inversion symmetry in, e.g.,

single-stranded DNA or RNA.
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of potential accounts for an energetic barrier for translocation

through the pore. The lack of inversion symmetry reflects,

for example, the difference in passing single-stranded DNA

or RNA in the 3# / 5# direction through the pore as

opposed to the reverse. The energy due to the interaction

with the polymer-binding protein is, however, very different

and has the form �Fmx, growing linearly with x. Thus the

energy decreases as the polymer translocates to the right-

hand side. The value of Fm is governed by the chemical

potential difference per monomer, Dm, of the polymer in the

solutions on the right-hand and left-hand sides. This

chemical potential difference is a function of the protein

concentration and its binding energy to the polymer (a more

detailed description of Fm for the microscopic model

discussed below is presented in Appendix A). Finally, the

backward force applied on the bead leads to a contribution to

the energy of the form Fx. Upon collecting together these

contributions, the total potential experienced by the random

walker, F(x), is given by

FðxÞ ¼ UðxÞ � ðFm � FÞx: (1)

As is evident from the effective energy landscape shown in

Fig. 5 b, the random walker is moving in a periodic potential

with an overall slope that depends on the protein

concentration and binding energy as well as the external

force. Such a potential leads on long time scale and large

length scales to motion that is diffusion superimposed on an

overall drift velocity. Thus, the average location of the

particle Æxæ behaves as Æxæ ¼ vt whereas the mean-square

fluctuations about this drift behave as Æx2æ � Æxæ2 ¼ 2Dt,
where v and D depend on Fm � F and the details of the

ratchet potential (see, e.g., Lubensky and Nelson, 1999).

Here, the brackets Æ. . .æ represent an average over thermal

fluctuations.

We emphasize that our simplified description in terms of

a single coordinate x that diffuses and drifts in a one-

dimensional energy landscape is valid only when the

translational motion of the polymer backbone through the

pore is the slowest process in the problem (Lubensky and

Nelson, 1999). In particular, this model assumes that the

translocating polymer is not so long that the relaxation times

in the cis (left) or trans (right) chambers exceed the

diffusion time for the backbone through the pore. This

simplified model is also inadequate if the polymer can

become bound to the pore interior for long periods, as recent

experiments suggest occurs for one of the best studied

polymer-pore systems (Bates et al., 2003). In this case, x
will still undergo biased diffusion on long enough time-

scales, but its velocity and diffusion coefficient will no

longer be determined by a simple potential U(x). Finally, the

effect of binding proteins can be captured by a single free-

energy parameter Dm only when their binding and un-

binding kinetics are sufficiently fast. The opposite limit, in

which proteins bind irreversibly, but slowly, to the polymer,

has also received attention (Peskin et al., 1993; Simon et al.,

1992; Sung and Park, 1996), but we will not consider it

further here.

We now define a simplified microscopic model for the

motion of a random walker in such a potential. Our model is

in the spirit of those analyzed for motor proteins in Fisher

and Kolomeisky (1999) and Kolomeisky and Fisher (1999)

(see also ‘‘Molecular motors’’ in this section), and allows

exact results for the diffusion and drift on long times. In the

language of Fisher and Kolomeisky (1999) and Kolomeisky

and Fisher (1999), our model is an n ¼ 2 model

corresponding to a motor with just two internal states. More

importantly, our model generalizes naturally to a heteroge-

neous version (see ‘‘The Effect of Heterogeneity On The

Energy Landscape’’) for which exact results are also

possible. We allow x to assume a discrete set of values xm,

where m ¼ 0, 1, 2 . . . labels distinct a (even) and b (odd)

sites. We can allow different distances between xm11 � xm,

and xm12 � xm11 but require xm12 � xm ¼ 2a0, which we

assume for simplicity is the size of the polymer unit that

accommodates a single adsorbed protein. For a homopoly-

mer, the interactions with the pore are some periodic function

with a period that we can take to be 2a0. To model this

situation, we take odd-labeled sites to have a higher energy

than even-labeled sites. The arrangement is shown schemat-

ically in Fig. 6. Even sites have an energy e¼ 0 whereas odd

sites (corresponding roughly to the peaks in the ratchet

potential of Fig. 5) have a higher energy e ¼ De. Also,

indicated in the Figure are the hopping rates that describe the

dynamics of the random walker. The detailed balance

condition (in temperature units such that kB ¼ 1) is satisfied

by

FIGURE 5 (a) The periodic potential due to pore interactions with

a translocating polymer without inversion symmetry. (b) The tilt of this

potential generated by a combination with the binding protein and the ex-

ternal force.
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w
/
a ¼ ve�De=T�f=2T

w
)
b ¼ ve

f=2T

w
)
a ¼ v#eð�Dm�De1 f=2Þ=T

w
/
b ¼ v#e�f=2T

: (2)

Because of the lack of reflection symmetry in the trans-

locating DNA or RNA (for our model this asymmetry could

be represented by taking x1 � x0 6¼ x2 � x1), we expect the

intrinsic hopping rates to be unequal, v 6¼ v#. The bias

induced by the interaction of individual monomers with the

reservoir of proteins on one side of the pore has been

accounted for by the chemical potential difference Dm. A

more detailed discussion of the dependence of Dm on the

protein-binding energy and its concentration is given in

Appendix A. The effect of the applied force is included

through the parameter f ¼ Fa0. Note that the bias controlled

by Dm . 0 arises only for steps from odd to even sites since

a protein is assumed to bind only to a whole monomer. As

pointed out, in Kolomeisky and Fisher (1999), other f-
dependences of the rates consistent with detailed balance are

possible. We shall be content with the simple one displayed

in Eq. 2 that corresponds to choosing x1 � x0 ¼ x2 � x1.

To show that this microscopic model embodies an

effective potential of the form Eq. 1, we eliminate the odd-

numbered sites. This elimination can be accomplished by

formally solving the equations of motion for the odd sites,

substituting into the remaining even site equations, and

taking the long time limit (see Appendix B). Alternatively

we can invoke detailed balance and consider an effective

energy difference DE ¼ E(m1 2) � E(m) between site m1

2 and m, where m is even. Upon setting

Wm;m1 2

Wm1 2;m

[ e
ðEðm1 2Þ�EðmÞÞ=T

; (3)

where Wn,m is the effective transition rate between site m and

n, we have

DE ¼Eðm1 2Þ � EðmÞ

¼ T ln
w

)
a w

)
b

w
/
a w

/
b

� �
: (4)

Use of the rates Eq. 2 leads to

DE ¼ �Dm1 2f (5)

as one would expect. Note that when the force vanishes ( f ¼
0) and the chemical potential gradient Dm¼ 0, one has DE¼
0 and no net motion is generated. More generally, an

effective tilted potential of the form Eq. 1 is generated, with

Dm . 0 causing a drift of the polymer to the right. The

external force on the left can reduce or even reverse the

overall slope. Such a potential inserted into microscopic rate

equations for the even sites (see Appendix B) is well known

to lead to diffusion with drift on long timescales and large

length scales.

In fact, for this model using the results of Derrida (1983)

and following Fisher and Kolomeisky (1999) and Kolo-

meisky and Fisher (1999), one can calculate the velocity and

diffusion constant exactly. After some lengthy calculations,

one obtains for the velocity

v ¼ 2a0

w
/
a w

/
b � w

)
a w

)
b

w
/
a 1w

)
a 1w

/
b 1w

)
b

: (6)

The diffusion constant of the model is given by

D ¼ 2a
2

0

ðw)
a w

)
b 1w

/
a w

/
b Þ1 8w

)
a w

)
b w

/
a w

/
b

ðw)
a 1w

)
b 1w

/
a 1w

/
b Þ3 K; (7)

with

K ¼ ðw)
a Þ2

1 ðw)
b Þ2

1 ðw/
a Þ2

1 ðw/
b Þ2

1 2ðw/
a w

)
a 1w

/
b w

)
b 1w

)
a w

/
b 1w

/
a w

)
b Þ: (8)

It is interesting to set f ¼ 0 and consider the limit of

Dm=T � 1 (small chemical bias, no external force) and the

limit Dm/T / N and Dm � De (large chemical bias, no

external force). When Dm=T � 1, the velocity takes the

linear response form

v ¼ 2a0vv#e
�De=T

ðv1v#Þð11 e
�De=TÞ

Dm

T
(9)

In the limit of Dm/T / N and Dm � De, the velocity

saturates at vmax, with

vmax ¼ 2
vv#

v1 e
De=Tðv1v#Þ

: (10)

In both cases the velocity is a decreasing function of De, as

one might expect because the rate-limiting step in this simple

FIGURE 6 Graphical representation of a simplified model for polymer

translocation or molecular motors. These two cases are distinguished by the

choice of rate constants (see text). The distinct even and odd sublattices are

denoted by a and b, respectively.
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polymer translocation model is the energetic barrier as each

successive segment passes through the pore potential.

For the diffusion constant, one finds similarly in the limit

Dm=T � 1:

D ¼ 4a
2

0

vv#e�De=T

ðv1v#Þð11 e
�De=TÞ

� 2a
2

0

Dm

T

3
ðvð11 e

�De=TÞ1v#ð1 � e
�De=TÞÞ

ðv1v#Þ2ð11 e
�De=TÞ2

: (11)

Like the velocity, in this regime the diffusion constant

decreases as De increases. Note that the diffusion constant

deceases when Dm increases. This behavior arises since the

rate of backward steps decreases as Dm increases. In the limit

Dm/T / N, and Dm � De, we find that the diffusion

constant saturates at

Dmax ¼ a
2

0

2vv#ððv1v#Þ2
e

2De=T
1v

2ð11 2e
De=TÞÞ

ðv1 e
De=Tðv1v#ÞÞ3

; (12)

which also decreases with De. The diffusion constant again

decreases as a function of De due to the rate-limiting step of

the passage through the pore.

Molecular motors

A typical experimental setup is shown in Fig. 7. The motor

attempts to move from the plus end to the minus end by

utilizing the chemical energy stored in ATP or some other

source of chemical energy. For RNA polymerase, this energy

source would be the nucleotide triphosphates, which are

converted into mRNA (not shown). A force (say from an

optical tweezer) pulls in the opposite direction to the motion

generated by the ATP. In this section, we focus primarily on

models of relatively simple motors as in Fig. 7 and mention

only in passing more complicated effects associated with

motors such as helicases or RNAp.

Theoretical models of molecular motors (Jülicher et al.,

1997) have demonstrated how an effective potential of the

form Eq. 1 is generated as a result of the coupling to an energy

source like ATP for a general class of periodic substrate

potentials that lack inversion symmetry. Here we again

introduce a simple model for a two-level ratchet that is amend-

able to an exact solution, similar to an n ¼ 2 version of the

models of Fisher and Kolomeisky (Fisher and Kolomeisky,

1999; Kolomeisky and Fisher, 1999). Like the model for

polymer translocation in the previous section, this motor

model will allow us to study the effect of heterogeneity. We

first consider the homogeneous motor model in some detail.

We again consider a one-dimensional lattice where even

sites have energy e ¼ 0 and odd sites have an energy e ¼ De.
The odd sites represent an ‘‘inchworm’’-like walking that is

facilitated by chemical energy released by, e.g., hydrolysis of

ATP. The transition rates depicted in Fig. 6 now take

a different form, namely

w
/
a ¼ ðaeDm=T

1vÞe�De=T�f=2T

w
)
b ¼ ða1vÞef=2T

w
)
a ¼ ða#eDm=T

1v#Þe�De=T1 f=2T

w
/
b ¼ ða#1v#Þe�f=2T

: (13)

Note that there are two parallel channels for the transitions

(Jülicher et al., 1997). The first, represented by contributions

containing a and a#, arise from utilization of chemical

energy. The second channel, represented by the terms

containing v and v#, correspond to thermal transitions

unassisted by the chemical energy. Dm is given by the

standard relation (Howard, 2001),

Dm ¼ T ln
½ATP�

½ADP�½P�

� �
� ln

½ATP�eq

½ADP�eq½P�eq

 !" #
; (14)

where the square brackets [. . .] denote concentrations under

experimental conditions and the [. . .]eq denote the corre-

sponding concentrations at equilibrium. We have again

assumed the external applied force f biases the motion in

a particularly simple way. If the substrate lacks inversion

symmetry, we have a# 6¼ a and v# 6¼ v. As discussed in the

Introduction, in some cases an additional force arises from,

e.g., basepairing energies in the case of helicases, DNA

polymerases, and exonucleases. Similarly, an addition force

arises also for motors such as RNA polymerase and

ribosomes, which produce trailing strands of mRNA or

protein, respectively. Here we ignore such contributions,

although they could easily be added in a simple way to the

model through a redefinition of f through f / f 1 fm, where

fm is the additional force. The model is formally similar to the

model of polymer translocation, although the different func-

tional form of w/
a ; w)

b ; w)
a ; and w/

b has important

consequences.

First we consider the effective energy landscape. To this

end, we again eliminate the odd sites and describe the

FIGURE 7 Setup modeled. The motor is moving from the ‘‘plus’’ end to

the ‘‘minus’’ end. A force is pulling on the motor in the opposite direction.

Note that some of the specific biological examples considered in the text are

more complicated and may be driven by energy sources other than ATP.
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remaining dynamics in terms of an effective potential. This is

the effective potential under which a random walker

satisfying detailed balance would exhibit the same dynamics.

From a formula similar to Eq. 3, one finds that DE ¼ E(m1

2) � E(m), where m is an even site, is given by

DE ¼ T ln
ða1vÞða#eDm=T

1v#Þ
ðaeDm=T

1vÞða#1v#Þ

 !
1 2f ; (15)

where we have used the rates Eq. 13.

Note that when the external force f ¼ 0 and the ATP/ADP

1 P chemical potential difference Dm ¼ 0, one has DE ¼
0 and no net motion is generated. Also, when there is

directional symmetry in the transition rates a ¼ a#, v ¼ v#,
and f ¼ 0, one has DE ¼ 0, even when Dm 6¼ 0. Absent this

symmetry, chemical energy can be converted to motion and

an effective tilted potential is generated. Although these

conditions are equivalent to those presented in Jülicher et al.

(1997) and Prost et al. (1994) for continuum models, it is

interesting to see them at work in the ‘‘minimal’’ model

studied here (see also Fisher and Kolomeisky, 1999, and

Kolomeisky and Fisher, 1999). The effect of the externally

applied force is simply to change the overall tilt in the

potential.

For a motor on a homogeneous or periodic substrate, the

effective potential generated by the coupling to the chemical

potential is thus qualitatively the same as that of a polymer

translocating through a pore. Again, on long timescales and

large length scales, the dynamics is just diffusion with drift.

The equation for the velocity and diffusion constant are

given by Eqs. 6, 7 and 8 together with the rates displayed in

Eq. 13.

As for the polymer translocation problem, it is interesting

to consider various limits for the case f¼ 0. Using Eq. 13, we

find in the limit of Dm=T � 1 a drift velocity

v ¼ 2a0ðv#a� va#Þe�De=T

ða1v1a#1v#Þð11 e
�De=TÞ

Dm

T

� �
: (16)

Therefore, for small Dm/T, the velocity decreases as De
increases. Note that even when Dm 6¼ 0, v vanishes for

a symmetric substrate, i.e., for v#¼ v and a# ¼ a. A natural

measure of the asymmetry of the potential is v#a/va#. When

this quantity is .1 (,1), a positive Dm induces a motion to

the right (left). This result remains valid to any order in Dm.

The maximum possible motor velocity vmax is obtained in

the limit Dm/T / N and Dm � De, where

vmax ¼ 2a0

v#a� va#

a1a#
: (17)

In contrast to the previous regime and the polymer

translocation problem, the velocity is insensitive to De.

Because of the injection of large amounts of external

chemical energy, the barrier De no longer controls a rate-

limiting step.

For the diffusion constant of this model of molecular

motors in the limit Dm=T � 1, we find

D ¼ 4a
2

0

ða1vÞða#1v#Þe�De=T

ða1v1a#1v#Þð11 e
�De=TÞ

1 a
2

0

Dm

T

3
2e

�De=T
G

ða1v1a#1v#Þ2ð11 e
�De=TÞ2

; (18)

with

G ¼ e
�De=Tða1v� a#� v#Þða#v� av#Þ

1aa#ð2ða1a#Þ1 3ðv1v#ÞÞ
1 ðv1v#Þða#v1av#Þ1a#2

v1a
2
v#: (19)

Like the velocity, the diffusion constant decreases as De
increases in this regime. Note that the diffusion constant

increases as Dm increases, because Dm enhances the rates of

motion in both directions. In the limit Dm/T / N, one

obtains

Dmax ¼ 2a2

0

va#1v#a1 2aa#

a1a#
: (20)

Again, for large chemical potential differences, the result is

independent of De.

THE EFFECT OF HETEROGENEITY ON THE
ENERGY LANDSCAPE

Next we discuss the effect of heterogeneity on the effective

energy landscape experienced by motors or translocating

polymers. The detailed dynamics that results will be

considered in the next section. As we shall see, heterogeneity

has dramatic consequences over a range of parameters close

to the stall force.

We first consider the somewhat simpler problem of

heterogeneity and polymer translocation. We then show that

a similar picture arises for motor proteins on heterogeneous

substrates like DNA or RNA.

Polymer translocation

Two sources of heterogeneity affect polymer translocation.

Both arise for polymers composed of different types of

monomer. We assume for simplicity that the monomers

composing the polymer are drawn from some random dis-

tribution with a finite variance. Provided the correlations

along the backbone are short range, our results are insen-

sitive to the exact nature of the distribution. The effect

of sequence heterogeneity corresponding to a particular
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nucleotide sequence could easily be incorporated into a nu-

merical analysis of the dynamics.

We first consider general features of the potential for

a model with sequence heterogeneity. Randomness in the

composition of the polymer will, of course, modify the

interaction potential between the polymer and pore, U(x). It

is easy to see that this leads to a random potential component

with a finite variance around its mean value, i.e., a random

energy landscape. The second, more striking, effect arises

from the randomness in the binding energy of the proteins.

The associated force depends specifically on the location x
along the polymer. In a convenient continuum notation, the

total energy gained by attaching to the monomers has the

form
R x

0
Fmðx#Þdx#; where Fm(x) represents the different

binding energies associated with the sequence of the

polymer. If the sequence is random, the fluctuations around

the mean slope of the potential grow like
ffiffiffi
x

p
: The effective

potential experienced by the random walker is therefore

UeffðxÞ ¼ UðxÞ �
Z x

0

Fmðx#Þdx#� Fx

� �
; (21)

where we have included the externally applied force, F. A

schematic representation of the potential is shown in Fig. 8.

Since
R x

0
Fmðx#Þdx# has fluctuations that grow as

ffiffiffi
x

p
; the

sequential binding of proteins to a translocating polymer

creates a random forcing landscape, in contrast to the

landscape defined by Eq. 1. Because the energy landscape

itself can be viewed as a simple random walk about a linear

landscape, the random force contribution to Ueff(x) (an

integrated random walk) dominates the random energy term

arising from interactions with the pore. As will be discussed in

the next section, this results in unusual behavior if the

externally applied force lies in a certain range of values near

the stall force.

Note that it is also possible to obtain a purely random

energy landscape in polymer translocation. When the

chemical environments on both sides match (e.g., for

identical concentrations of binding proteins) one has Fm(x)

¼ 0. The only random component of the energy landscape is

due to the potential for translocating through the pore that

has bounded fluctuations about its mean value. For this

energy landscape, the dynamics at long times and large

length scales is then biased diffusion, with a drift velocity

and diffusion constant renormalized by the heterogeneous

interactions with the pore (Alexander et al., 1981).

We now explore these effects within our microscopic

model of polymer translocation. The heterogeneity is in-

troduced into the model through the rates Eq. 2. Imagine

drawing the set of parameters {p} ¼ {v, v#, De, Dm} from

random distributions (corresponding to various nucleotide

sequences) with a finite variance. According to Eq. 5, the total

change in energy after m monomers translocate is given by

EðmÞ ¼ 2fm1 +
m

l¼1

DEðlÞ : (22)

Here the DE(m) are effective energy differences between two

even sites corresponding to the set of values of the set {p}

drawn randomly. Since the energy is a sum of independent

random variables, a random forcing landscape is developed.

We expect that a simple random energy landscape results

if we turn off the protein binding by setting Dm ¼ 0.

However, because the energy at even sites is always E¼ 0 in

our simple model, the landscape is just a uniform tilt in this

limit. A more realistic model would allow additional energy

variations at these sites. If we assign an energy e(m) to these

even sites, it is straightforward to show that the total change

in energy after m monomers have translocated takes the form

EðmÞ ¼ 2fm1 eðmÞ; (23)

corresponding to a random energy landscape.

Molecular motors

We now turn to the effect of heterogeneity on molecular

motors. Here, as for polymer translocation, we select the set of

parameters {p} ¼ {a, a#, v, v#, De} from a random

distribution with a finite variance. For some motors and en-

zymes (for example, RNA polymerase, helicases, and DNA

polymerases and exonucleases—see Introduction and below),

Dm may also be random. This clearly only adds an additional

contribution to the random forcing landscape. Using the

results presented above, it is easy to see from Eq. 15 that the

total effective energy change after m monomers is given by

EðmÞ ¼ 2fm1 +
m

l¼1

DEðlÞ: (24)

Here, each DE(m) corresponds to an independent set of

values of {p} drawn randomly. Thus, as in the polymer

translocation problem, the potential is random forcing.

FIGURE 8 Graphical representation of the energy landscape in the case of

heterogeneous polymer translocation when the chemical environments on

both sides of the pore are different. Potential fluctuations about the mean

slope scale like
ffiffiffi
x

p
for large x. The same picture holds for molecular motors

moving on a heterogeneous substrate powered by a finite chemical potential

difference.
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For motors such as helicases, DNA polymerases and

exonucleases, and RNA polymerase and ribosomes, an ad-

ditional contribution to the random energy arises due to the

force associated with, e.g., basepairing energies or the trail-

ing strand that is produced. The effect of this would be to

modify the expression above to

EðmÞ ¼ 2fm1 +
m

l¼1

fmðlÞ1 +
m

l¼1

DEðlÞ; (25)

where fm is the additional contribution of the explicit random

forcing from monomer m. The resulting random forcing

landscape is even more pronounced.

The above scenario applies as long as the chemical

potential difference Dm 6¼ 0. In the case when Dm ¼ 0, it is

easy to see that DE(m) ¼ 0 unless we allow, as in the

polymer translocation problem, for the energy at even sites

also to vary and take the value e(m). In this case we obtain

EðmÞ ¼ 2fm1 eðmÞ; (26)

corresponding to a random energy landscape provided e(m)

has only short range correlations. Although we could write

the energy in the form of Eq. 24, now DE(m) ¼ e(m) � e(m�
1), so DE(m) is effectively the gradient of a random potential

with bounded fluctuations. Note, however, that for motors

with an fm contribution (as in Eq. 25), it is not possible to

obtain a random energy landscape.

The energy landscape for both polymer translocation and

molecular motors is therefore qualitatively identical. Gener-

ically, in both cases, a random forcing energy landscape

develops. However, if the motor model without the applied

external force has no bias (i.e., if Dm ¼ 0), we recover the

diffusion with drift dynamics associated with a random

energy potential.

DYNAMICS IN HETEROGENEOUS
ENVIRONMENTS

In this section we discuss in detail the dynamics of

translocating polymers and motor proteins with heterogene-

ity for the model depicted schematically in Fig. 6. We

describe four distinct cases with different dynamical behav-

iors as the externally applied force is varied. The critical

forces for the transition between the regimes can be

calculated exactly in terms of the rates w/
a ; w)

b ; w)
a ; w/

b

averaged over their heterogeneous generalization with f ¼ 0.

The explicit expressions for polymer translocation and molec-

ular motors can be easily obtained by using the rates in Eqs. 2

and 13, respectively. We assume throughout that Dm 6¼ 0, as

the case Dm ¼ 0 leads only to a random energy model and

biased diffusion. Also, contributions to the random forcing

energy landscape of the form of Eq. 25 are omitted for

simplicity. Their addition is straightforward and can be

easily seen to enhance the region of anomalous dynamics.

The dynamical behaviors of random walkers in random

forcing or random energy landscapes have been studied in

detail in the statistical mechanics literature (Bouchaud et al.,

1990; Derrida, 1983). Unusual dynamical behavior arises for

random walkers in a random forcing energy landscape.

Using the results of Derrida (1983), one can calculate the

transition points between the different regimes including the

effect of randomness. Parts of the calculation are outlined in

Appendix C along with the different regimes in terms of the

transition rates w/
a ; w)

b ; w)
a ; w/

b . Here we consider the

experimental setup in Figs. 4 and 6 where the external force

is varied. Denoting spatial averages by an overline and using

the results of Appendix C, one finds the following regimes.

Regime I

The velocity v and diffusion constant D of the model are

finite when

f , � T

4
ln

w
)
a w

)
b

w
/
a w

/
b

� �2

f¼0

; (27)

or

f .
T

4
ln

w
/
a w

/
b

w
)
a w

)
b

� �2

f¼0

; (28)

where the subscript f ¼ 0 denotes that f has been set to zero

in the average. In this regime Æxæ ¼ vt and Æx2æ � Æxæ2 ¼ 2Dt
for long times, where the angular brackets denote an average

over different thermal histories of the system. Simpler

conditions can be obtained by assuming that DEðmÞ ¼
T ln ðw)

a w)
b Þ=ðw/

a w/
b Þ

� �
has a Gaussian distribution

about the mean 2f 1DEf¼0 (see Eqs. 5 and 15) and

a variance V ¼ ðDEÞ2
f¼0 � ðDEÞ2

f¼0: Here again the sub-

script f ¼ 0 denotes that averages are taken with the value of

the force set to zero. In this case one has

f .
1

2
ðDEf¼0 1V=TÞ; f ,

1

2
ðDEf¼0 � V=TÞ : (29)

Note that the force does not contribute to the variance so that

V ¼ DE2
f¼0 � DE

2

f¼0 ¼ DE2
f � DEf

2
.

Regime II

The velocity v is finite but the diffusion constant is infinite.

Thus, in this region Æxæ¼ vt and Æx2æ� Æxæ2 ; t2/m, where 1 ,

m , 2. The relevant force ranges are

� T

4
ln

w
)
a w

)
b

w
/
a w

/
b

� �2

f¼0

, f #� T

2
ln

w
)
a w

)
b

w
/
a w

/
b

� �
f¼0

; (30)
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and

T

2
ln

w
/
a w

/
b

w
)
a w

)
b

� �
f¼0

# f ,
T

4
ln

w
/
a w

/
b

w
)
a w

)
b

� �2

f¼0

: (31)

Provided that DE has a Gaussian distribution, the conditions

reduce to

1

2
ðDEf¼0 1V=2TÞ, f #

1

2
DEf¼0 1V=T
� �

;

1

2
ðDEf¼0 � V=TÞ # f ,

1

2
DEf¼0 � V=2T
� �

: (32)

For a Gaussian distribution, it is known (Bouchaud et al.,

1990) that the exponent m is given by

m ¼ 2TjDEf¼0 � 2f j=V: (33)

Regime III

The velocity v is zero in the sense that Æxæ; tm, where m, 1.

The exponent m also controls the variance, Æx2æ � Æxæ2 ; t2m.

This behavior occurs when

� T

2
ln

w
)
a w

)
b

w
/
a w

/
b

� �
f¼0

# f #
T

2
ln

w
/
a w

/
b

w
)
a w

)
b

� �
f¼0

: (34)

When DE has a Gaussian distribution, these conditions

reduce to

1

2
ðDEf¼0 � V=2TÞ, f ,

1

2
DEf¼0 1V=2T
� �

: (35)

Sinai diffusion

Here Æx æ¼ 0 and Æx2æ; (ln(t/t))4, where t is the microscopic

time needed to move across one monomer. This regime

appears precisely at the ‘‘stall force’’ corresponding to

a disordered substrate, namely

fs ¼
T

2
ln

w
/
a w

/
b

w
)
a w

)
b

� �
f¼0

: (36)

If DE has a Gaussian distribution, this condition yields

fs ¼
DEf¼0

2
: (37)

The resulting behavior as the force is varied is summarized

qualitatively in Fig. 1.

It is interesting to consider the location of the stall force, fs,
as well as the range of forces over which the displacement is

anomalous, namely the region where v ¼ limt/NÆxæ=t ¼ 0;
in some more detail for both polymer translocation and

molecular motors in some simple scenarios. These quantities

characterize how the location and width of the anomalous

displacement region develops as a function of temperature

and chemical forces. We assume DE(m) with a Gaussian

distribution about DE with a variance V, although it is

straightforward to extend the results to non-Gaussian

distributions with no change of the qualitative behavior. It

is straightforward to show using Eq. 35 that the range of

forces, Df, over which the velocity is zero satisfies

Df ¼ 1

2T
V: (38)

For polymer translocation using Eqs. 5 and 37 implies that

Sinai diffusion occurs for the force

fs ¼
Dm

2
; (39)

whereas Eq. 38 implies that the range of forces around fs
where the displacement is anomalous is given by

Df ¼ 1

2T
ðDm2 � Dm

2Þ: (40)

If there are no proteins on left-hand side (cis chamber), and

a small concentration, P, of protein is added to the right-hand

side (trans chamber) one can show using Eq. A3 that fs } P
whereas Df } P2. Thus, as the chemical bias increases, both fs
and Df grow. Note that in general, one may consider proteins

in both the left and right chambers. In this case even when

the average chemical bias Dm ¼ 0, one may still have V .

0 giving rise to anomalous dynamics even when the external

bias F ¼ 0.

For molecular motors, the situation is more interesting.

The results presented above for the transition points between

the different regimes hold even when Dm is also random.

However, here we restrict ourselves to the simpler case when

Dm is constant. In this case, Eq. 15 implies that for small

chemical potential (Dm=T � 1), the chemical energy

difference DEf¼0 ¼ qDm, where q is the coefficient in the

Taylor expansion of Eq. 15 in Dm, which is independent of

T. Therefore, in this limit, the stall force is

fs ¼
qDm

2
; (41)

and

Df ¼ Dm
2

T
ðq2 � q

2Þ; (42)
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where we have assumed the purpose of a rough estimate that

the chemical potential difference does not depend on the type

of monomer. Similarly to polymer translocation, as the

system is driven out of chemical equilibrium, both fs and

Df grow. However, in the limit of Dm=T � 1, one obtains

DEf¼0 ¼ pT, where p is obtained by taking the appropriate

limit in Eq. 15 and is independent of T. We then have

fs ¼
pT

2
; (43)

and

Df ¼ Tðp2 � p
2Þ; (44)

implying that both quantities increase with increasing

temperature.

Note that if the force applied to the polymer or motor is

held constant and the chemical parameters (e.g., ATP or

protein concentration) are varied from their equilibrium

value, one should also observe a region of anomalous dis-

placement (see the general expressions in Appendix C).

These conclusions are summarized qualitatively in Figs. 1, 2,

and 3.

EXPERIMENTAL CONSIDERATIONS

As discussed in the previous section, the important quantity

for deciding if anomalous dynamics is present is the variance

V[ðDE2Þ � ðDEÞ2
of DE(m), where the overbar represents

an average over the ensemble of random sequences. Effects

related to sequence heterogeneity dominate when V is large

compared to kBTDE. Here we estimate the ranges over which

anomalous dynamics may be observed in experiments as

well as other preconditions needed to observe this behavior.

We also discuss the effect of finite time experiments on the

shape of the velocity-force curve. In this section, we

reintroduce Boltzmann’s constant kB.

Polymer translocation

For polymer translocation, whether the variance V is large

compared to kBTDE; of course, depends on a number of

factors, including the base composition of the polynucleotide

passing through the pore, the particular protein whose

binding drives translocation, and the concentration of the

binding protein. Nonetheless, it is instructive to consider an

example to get some sense of the orders of magnitude

involved. We focus on DNA binding proteins. Note that, like

those of most such proteins, the binding sites are several

nucleotides long; unlike in previous sections, unless stated

otherwise, we will give values of V and other parameters

normalized per nucleotide rather than per bound protein.

The bacteriophage T4-coded gene 32 protein (gp32) is

a monomeric single-stranded DNA (ssDNA) binding protein

that is implicated in DNA replication and related processes

(Coleman and Oakley, 1980). When it associates with

ssDNA cooperatively in the ‘‘polynucleotide’’ mode

(Kowalczykowski et al., 1981), its net affinity Knet can vary

by as much as a factor of 10 depending on the polymer’s base

composition; in physiological salt concentrations, a typical

range is Knet ;2 3 108 � 2 3 109 M�1 (Newport et al.,

1981). (The net affinity is the affinity of an additional protein

molecule for a growing chain of cooperatively bound

monomers; it differs from the affinity of an isolated protein

molecule for ssDNA by an enhancement factor arising from

the cooperative interactions.) In this binding mode, the

binding site of each gp32 monomer is seven nucleotides

long. For a micromolar protein concentration, Knet is large

enough that almost all sites on the translocated ssDNA will

be occupied. Upon assuming that V is determined entirely by

the base dependence of Knet, we then estimate that V;0.1 �
0.2(kBT)2 for a ‘‘generic’’ DNA molecule in which each of

the bases appears with roughly equal frequency. Here T is

room temperature, kBT ’ 0:59 kcal=mole: In this case, the

change in free energy of a nucleotide moved from a buffer

without any gp32 to one where the protein is present is Dm;

kBT (see Eq. 2). Upon taking the ssDNA to be a freely jointed

chain with Kuhn length 1.5 nm (Smith et al., 1996), one finds

that a force of ;10–15 pN on the polymer is required

to cancel the effects of the protein binding. To have

kBTDE & V; so that disorder effects can be detected, the value

of the force must be controlled to ;10% or better accuracy.

Molecular motors

To be able to measure the motion of a motor along

a substrate, it must remain attached long enough to be able

to perform many moves across monomers. In other words, if

the rate at which the motor leaves the substrate is g and the

rate of crossing a monomer to the right or left is w/ or w);
respectively, then g � w/ 1w) must hold. In the regime

of anomalous dynamics, w/ is of the same order of w):
Therefore, the condition will not be fulfilled in this regime

when the rate of hopping against the chemical bias w) is

always very small.

There are, however, experiments where such a restriction

does not hold. For example, the experiment by Wuite et al.

(2000) on the DNA polymerase/exonuclease system (see

also Maier et al., 2000) monitors not the displacement of

a single motor but the location of the junction between the

ssDNA and the dsDNA. Therefore, it is more natural to

model the dynamics of the ssDNA/dsDNA junction and not

of the motor. A motor that leaves the ssDNA/dsDNA

junction is eventually replaced by a motor from the solution.

Within our models, this can be represented by an internal

state of the junction (similar in spirit to Fisher and

Kolomeisky, 1999, and Kolomeisky and Fisher, 1999). A
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model of this type for the DNA polymerase/exonuclease has

been studied in Goel et al. (2003). However, the disorder in

the transition rates, present due to the heterogeneity of the

DNA, has been neglected. In Appendix D we analyze in

some detail a simple model of the DNA polymerase/

exonuclease system. As shown in the appendix it is

straightforward to show that the presence of heterogeneity

(for example, in the energy gained from the hydrolysis of the

different NTPs) leads to a random forcing energy landscape.

One therefore expects a region of anomalous dynamics near

where the external stretching force F# causes a change in

direction. We stress that more realistic models with many

intermediate states can by analyzed similarly without affect-

ing the existence of the region with anomalous dynamics.

Unfortunately, for this experiment an estimation of the width

of the region is not straightforward.

Estimates, similar to those above for polymer transloca-

tion, can be obtained for the random force landscapes for

a number of molecular motors that operate on DNA or RNA.

Two examples of interest are RNA polymerases (RNAps)

(Davenport et al., 2000; Gelles and Landick, 1998; Jülicher

and Bruinsma, 1998; Wang et al., 1998) and helicases acting

on double-stranded DNA (dsDNA) (Bianco et al., 2001;

Dohoney and Gelles, 2001; Lohman and Bjornson, 1996;

von Hippel and Delagouette, 2001). An RNAp’s function is

to transcribe DNA—that is, to synthesize an RNA ‘‘copy’’

with the same sequence as a DNA molecule. To do so, it

walks along dsDNA trailing a growing RNA strand. The

RNAp motor is powered entirely by the energy gained from

the hydrolysis of successive NTPs as they are added to the

RNA molecule. Although the mechanism of RNAp motion is

still the subject of debate (Jülicher and Bruinsma, 1998; von

Hippel and Pasman, 2002), many models suggest that at low

enough NTP concentrations, its ability to move forward will

be limited by the rate at which NTPs arrive at the catalytic

site. A straightforward way to force RNAp into a regime in

which its motion is dominated by a random force energy

landscape is thus to place it in a buffer with different

concentrations of each of the four NTPs. The motor’s ability

to take a forward step is dependent on the incorporation of

the appropriate NTP, and the rate of that incorporation is

proportional to that NTP’s concentration. Thus, one can in

principle make V arbitrarily large and satisfy the criterion

V . kbTDE for significant random force effects. Each factor

of 10 difference between the concentrations of two

nucleotide triphosphates, and hence in the rates to make

a forward step, translates into a difference of kBT ln(10) �
2.3kBT in DE(m). Of course, in practice, other factors—for

example the possibility that the RNAp might fall off its DNA

track before the needed NTP arrives—will limit how large

a range of concentration differences can be achieved

experimentally. It will be interesting to see whether strong

disorder effects can be observed.

Another class of motors that use DNA as their track are

helicases, which are needed to separate the two strands of

dsDNA to facilitate various processes in the cell such as cell

division in prokaryotes. Helicases move along the DNA by

consuming energy from NTPs. Although some helicases

only break a few basepairs at a time, others can move

substantial distances along their tracks (Bianco et al., 2001;

Dohoney and Gelles, 2001). Recent modeling of certain

monomeric helicases (Betterton and Jülicher, 2003) suggests

that disordered DNA sequences affect helicase motion

primarily through the different energies required to open

different basepairs. Random sequences thus lead to anom-

alous helicase motion in much the same way they do

anomalous dynamics of mechanical unzipping (Lubensky

and Nelson, 2000, 2002). In the simplest case of ‘‘passive’’

opening, one finds that DE(m) � DEmotor 1 DEDNA(m),

where DEmotor, which summarizes the forward force exerted

by the helicase motor, is negative and has magnitude at least

;2kBT, and DEDNA is simply the thermodynamic free-

energy cost of opening each successive basepair, with size

roughly between 1 and 3 kBT (SantaLucia, 1998). One thus

has V ;1(kBT)2. This large variance means that it should be

relatively easy to observe anomalous, disorder-dominated

dynamics in helicases as predicted earlier for DNA

unzipping. If, for example, one assumes that the magnitude

of DEmotor is near its lower bound of 2kBT, then, in the

passive opening model, disorder effects should begin to

appear for a mechanical load opposing the motor’s motion of

as little as 7 pN and should persist up to at least 20 pN.

Finite time effects

All calculations of quantities such as the velocity have been

done by taking the limit of very large times and averaging

over thermal realizations with the same heterogeneous

sequence. For experiments done over finite times, the

velocity will not be strictly zero in the regime of anomalous

dynamics. Instead, the velocity decays to zero as tm�1
E ; where

tE is the experimental averaging time used to define v as

Æx(tE) � x(0)æ/tE. The closer m is to zero, the faster the decay

will be. Therefore, the curve of the velocity as a function of

the external force or chemical potential (see Figs. 1 and 2)

will be rounded, becoming sharper and sharper as tE / N.

To illustrate this, we have carried out simulations of model

Eq. 13 on a single realization of the disorder averaging over

thermal realizations and measured the v – F curve. The

results are shown in Fig. 9. As can be seen, the longer tE, the

closer is the v – F curve to that shown in Fig. 1. The convex

shape of the curve near the stall force is clear already for

averaging times tE ; 105, corresponding to motors that

transverse distances of O(1000) at f/T ¼ 0. Note that, if one

looks at the displacement of a single motor (i.e., without

averaging over thermal realizations), the regime of anoma-

lous dynamics will be characterized by long pauses at

localized regions (corresponding to deep minima of the

effective potential) with fast transitions between the

localized regions (corresponding to overcoming the barrier
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associated with the minima). The inset of Fig. 9 shows

a single trajectory as a function of time for a given realization

of disorder. The value of f/T was chosen to be in the region

close to the anomalous velocity regime but not inside it (the

point is at the edge of the anomalous diffusion region close to

the normal diffusion region). As can be seen, the motion of

the motor is characterized by long pauses at specific

locations along the track, with quick jumps between the

pause points. The location of the pause points is reproducible

for the same spatial disorder and different thermal realiza-

tions, although their duration varies from simulation to

simulation. Note that since the velocity is finite in this

regime, over large length scales the effect of the jumps

becomes unimportant. These pauses correspond to local

minima of the effective potential and as such are inherently

correlated with the structure of the track. Such pauses and

jumps have been observed in recent experiments (Danilo-

wicz et al., 2003) on DNA unzipping.

SUMMARY

We have studied the effect of sequence heterogeneity on

both polymer translocation and the motion of molecular

motors within simple models. The models were solved

exactly both with and without disorder. It was shown that

these systems can be represented on large length scales and

long timescales by a random walker moving along a random

forcing energy landscape. Thus, in a range of forces near the

stall force, we expect anomalous dynamics where the

displacement grows as a sublinear power of time. We stress

again that such results also apply to more sophisticated

models that include many internal states of the motor (see the

discussion of the DNA polymerase/exonuclease system in

Appendix D). Several systems in which the regime of

anomalous dynamics might be wide enough to be observable

were considered.

APPENDIX A: THE CHEMICAL POTENTIAL
DIFFERENCE FOR TRANSLOCATING POLYMERS

Here we discuss the dependence of the chemical potential difference Dm for

a translocating polymer between the right-hand (trans) and left-hand (cis)

sides of Fig. 4 on the protein concentrations and its binding energy to the

polymer. Consider first a denatured polymer in a solution with a concentration

cp of proteins that can bind to its monomers with a binding energyEb , 0. We

neglect cooperativity in the binding of the proteins to the polymer, although

this effect could easily be included. Assuming an ideal solution theory, the

protein chemical potential is given m ¼ m0 1T ln Pð Þ; where P ¼ cp/c and c

are the concentration of the solvent. Here we take the free-energy change due

to an addition of one isolated protein to the solvent to be m0 � T ln n, where n

is the number of solvent molecules (Landau and Lifshitz, 1963). Next, we

take the energy function of a polymer of length N inside the solution to be

H ¼ +
N

i¼1

ð�Ebsi 1m#siÞ; (A1)

where si ¼ 1(0) if a protein is bound (unbound) to monomer i and m# is

a chemical potential that controls the density of proteins bound to the

polymer. In thermal equilibrium m ¼ m#, which gives for the free energy of

a polymer monomer in the solution

�T lnð11P expðm0 � EbÞ=TÞ: (A2)

The change in the free energy of the polymer, which occurs as a result of

a monomer passing from the left (cis) chamber to the right (trans) chamber,

with ratios of protein/solvent concentrations PL and PR, respectively, is

given by

Dm ¼ dF
dNR

¼ �T ln
11PL expðm0 � EbÞ=TÞ
11PR expðm0 � EbÞ=TÞ

� �
; (A3)

where F is the total free energy of the polymer and NR is the number of

monomers in the right chamber. It is straightforward to see that this result

implies that for proteins with different binding energy to different types of

monomers, Dm will depend on the type of monomer.

FIGURE 9 The velocity as a function of f/T for different

values of tE. Here Dm/T ¼ 3 and parameters were chosen

with equal probability to be either {p} ¼ {5, 1, 0.3, 1, 0} or

{p} ¼ {4, 0.1, 0.7, 1, 0} (see text for notation). The

calculated regime of anomalous velocity is 0.5116 , f ,

0.699. Data were averaged over 100 thermal realizations.

(Inset) A single trajectory shown for the same parameters

at f/T ¼ 0.45.
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APPENDIX B: DERIVING THE EFFECTIVE
POTENTIAL FROM THE MASTER EQUATION

In this appendix we show that the equations for the probability Pn(t) of being

at site n at time t are equivalent in the long time limit (to be specified more

exactly below) to a random walker moving in an energy landscape

constructed using Eq. 4. We demonstrate this by eliminating the even sites

from the equations of motion (see Lattanzi and Maritan, 2002, for similar

ideas).

First, consider the equations governing the evolution of the probability,

i.e., the master equation. For odd n one has (see Fig. 6)

dPnðtÞ
dt

¼w
/

a Pn�1ðtÞ1w
)

a Pn11ðtÞ� ðw/

b 1w
)

b ÞPnðtÞ; (B1)

whereas for even n

dPnðtÞ
dt

¼w
/

b Pn�1ðtÞ1w
)

b Pn11ðtÞ� ðw/

a 1w
)

a ÞPnðtÞ: (B2)

Next, we solve the equation for the odd sites and substitute into that for

the even sites. The solution of the equation for the odd sites is

PnðtÞ ¼ e
�ðw/

b 1w
)
b Þt

Pnð0Þ1
Z t

0

dt e
ðw/

b 1w
)
b Þt

w
/

a Pn�1ðtÞ
��

1w
)

a Pn11ðtÞ
��

; (B3)

where Pn(0) is the probability distribution at the initial time t ¼ 0.

Substituting this into the equation for the even sites yields

At times t � ðw/
b 1w)

b Þ; one can neglect the two last terms in Eq. B4 and

approximate the integrals as follows:Z t

0

dt e
ðw/

b 1w
)
b Þt

f ðtÞ � 1

ðw/

b 1w
)

b Þe
ðw/

b 1w
)
b Þt

f ðtÞ; (B5)

where f(t) is assumed to vary slowly with t. In this long time approximation,

Eq. B4 reduces to

dPnðtÞ
dt

¼w
)

b w
)

a Pn12ðtÞ1w
/

b w
/

a Pn�2ðtÞ

� ðw/

b w
/

a 1w
)

b w
)

a ÞPnðtÞ; (B6)

where we have rescaled times such that t/ðt=ðw/
b 1w)

b ÞÞ: As expected,

this equation corresponds to a random walker moving in a potential

constructed using Eq. 4.

APPENDIX C: DERIVATION OF THE DIFFERENT
DYNAMICAL REGIMES

In this appendix the expressions for the different dynamical regimes in terms

of the hopping rates w/
a ; w)

a ; w/
b ; w)

b are given. These general equations

allow a straightforward derivation of the expressions in the text. However,

before turning to the results, we outline the derivation of the regime where

the displacement is anomalous. The derivation of the other regimes is much

lengthier, so we only sketch the main results.

Unless stated otherwise, we assume throughout this appendix that

log
w

)

a w
)

b

w
/

a w
/

b

� �
,0 ; (C1)

where, as in the main text, we denote spatial averages by an overbar.

Because expð�DE=TÞ ¼ w)
a w)

b =w/
a w/

b in our notation, this condition is

equivalent to assuming an overall bias to the right

DE,0; (C2)

where DE arises from the generalization of Eqs. 5 and 15 to heterogeneous

systems. The other opposite regime, DE . 0; can be treated similarly. As

shown by Derrida (1983), the velocity of a random walker on an infinite

lattice model in this case is given by

v¼ lim
N/N

N

+
N

i¼1
ri

; (C3)

where

ri ¼
1

Wi11;i

11 +
N�1

k¼1

Yk

l¼1

Wi1 l�1;i1 l

Wi1 l11;i1 l

� �" #
: (C4)

Here, Wi,j is the hopping rate from site j to i. The denominator of Eq. 3 can be

simplified by replacing the sum by an average of ri:

Æræ¼ lim
N/N

1

N
+
N

i¼1

ri: (C5)

Using the rates w/
a ; w)

a ; w/
b ; w)

b ; one finds that the average Æræ is finite

only if

w
)

a w
)

b

w
/

a w
/

b

� �
,1: (C6)

In this case the velocity is finite. However, when the inequality is reversed,

Æræ ¼ N and the velocity is zero.

A much lengthier calculation along somewhat similar lines can be done to

derive the other dynamical regimes. One obtains the following results.

Regime I

When

w
)

a w
)

b

w
/

a w
/

b

� �2

,1; (C7)

the velocity v and diffusion constant D of the model are finite. Namely, Æxæ¼
vt and Æx2æ � Æxæ2 ¼ 2Dt for long times, where the angular brackets denote

an average over different thermal histories of the system. Assuming for

simplicity that DE(m) is distributed around DE with a Gaussian distribution

with a variance V ¼ ðDEÞ2 � ðDEÞ2
; this condition reduces to

dPnðtÞ
dt

¼ e
�ðw/

b 1w
)
b Þt
Z t

0

dt e
ðw/

b 1w
)
b Þtðw/

b w
/
a Pn�2ðtÞ1w

)
b w

)
a Pn1 2ðtÞÞ

1 e
�ðw/

b 1w
)
b Þt
Z t

0

dt e
ðw/

b 1w
)
b Þtðw/

b w
:
a 1w

)
b w

/
a ÞPnðtÞ

� ðw/
a 1w

)
a ÞPnðtÞ1 e

�ðw/
b 1w

)
b Þtðw/

b Pn�1ð0Þ1w
)
b Pn1 1ð0ÞÞ: (B4)
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TjDEj
V

.1; (C8)

i.e., the variance of the energy fluctuations must not be too large. Here we

have used the fact that DE , 0 and the relation ex ¼ ex1ðx�xÞ2=2; which

holds for Gaussian distributions.

Regime II

When

w
)

a w
)

b

w
/

a w
/

b

� �
,1#

w
)

a w
)

b

w
/

a w
/

b

� �2

; (C9)

the velocity v is finite but the diffusion constant is infinite. It can be shown

(Bouchaud et al., 1990) that in this region the long time behavior is Æxæ ¼ vt
and Æx2æ � Æxæ2 ; t2/m, where 1 , m , 2. If we assume a mean value of DE

with a Gaussian distribution about the mean, the condition reduces to

1=2,
TjDEj
V

#1: (C10)

We have again used DE , 0. For this case it is known (Bouchaud et al.,

1990) that the exponent m is given by m ¼ 2TjDEj=V.

Regime III

When

w
)

a w
)

b

w
/

a w
/

b

� �
.1; (C11)

the velocity v is zero. More precisely, Æxæ ; tm, where m , 1. The diffusion

about this drift is anomalous in the sense that Æx2æ � Æxæ2 ; t2m. Assuming

again a mean value of DE with a Gaussian distribution about the mean leads

to the condition

TjDEj
V

#1=2; (C12)

where again we have used the fact that DE , 0.

Sinai diffusion

When the average bias is exactly zero,

log
w

)

a w
)

b

w
/

a w
/

b

� �
¼ 0; (C13)

the system exhibits Sinai diffusion (Sinai, 1982) with Æxæ ¼ 0 and Æx2æ ;
(ln(t/t))4, where t is the microscopic time needed to move one monomer.

Thus, we are now considering the case DE ¼ 0.

Note that when

log
w

)

a w
)

b

w
/

a w
/

b

� �
.0; (C14)

namely a reversed bias where DE . 0, similar regions can be found by

interchanging / and ). For example, when

w
/

a w
/

b

w
)

a w
)

b

� �2

,1; (C15)

the velocity v and diffusion constant D of the model are finite. Such results,

of course, require that the molecular motors remain attached when they

reverse direction.

Note also that the three regimes may be identified (Bouchaud et al., 1990)

according to the parameter m. In particular, we identify m. 2 with regime I,

1 , m , 2 with regime II, m , 1 with regime III, and m ¼ 0 with Sinai

diffusion.

APPENDIX D: SIMPLE MODEL FOR THE DNA
POLYMERASE/EXONUCLEASE SYSTEM

In this appendix, a model of the DNA polymerase/exoneclease system is

studied. It is shown how a more detailed microscopic model than those

studied in the main text also leads to an effective random forcing energy

landscape. However, in contrast to these models, the location of the

transition points into the anomalous dynamics regime cannot be calculated

exactly in a straightforward manner.

The model we consider is a simplified version of the model studied by Goel

et al. (2003). The model takes into account the two active sites of the motor,

one acting as a polymerase with the other acting as an exonuclease. The

system can be in one of five state denoted in Fig. 10 by a–f. The Figure

represents only transitions that differ by a motion of the motor over a distance

of one base. The full model along with an illustration of the experiment is

shown in Fig. 11. In state a, the motor is attached to the ssDNA/dsDNA

junction with the polymerase active site. In state b, the motor uses the energy

from the hydrolysis of NTP to be able to extend the dsDNA. States c and

d represent similar states but now with the motor connected to the junction

using the exonuclease active site. Here the motor does not utilize energy from

the hydrolysis of NTP but instead uses the binding energy of the NMP. State f

represents the motor unbound from the junction. One of the motors in the

solution can bind to the junction in through either the polymerase or

exonuclease active site. Clearly, the model is not a strictly one-dimension

model but corresponds to a random walker moving on two lanes.

The rates of transitions between the states are denoted in the Figure.

Explicit expressions similar to Eq. 13 can easily be written down. The effect

of the external stretching force F# acting on the ssDNA/dsDNA complex

will cause transitions through the cycle a/
w/

ba b/
w/

ab a to be less favorable with

transitions through the cycle c/
w)

dc d/
w)

cd c to be more favorable.

To show that the energy landscape corresponding to the model in the

presence of disorder is indeed a random forcing energy landscape, we first

calculate the landscape for the homogeneous model. Using the results of

Derrida (1983), we study one cycle of the model (see Fig. 10) and calculate

the ratio of the probabilities Pa(n) and Pa(n1 2) of being in the two a states

that differ by a translation of one base. Similarly, the effective energy

difference between any two other sites can be calculated. With the help of

Eq. C4, this ratio can be shown to be given by

Paðn12Þ
PaðnÞ

¼ 1

w
)

ba

A

B
; (D1)

with

A ¼ wcfw
)
dc w

)
cd w

)
ba w

/
ba w

/
ab 1wafw

)
dc w

)
cd w

)
ba w

/
ba w

/
ab 1wafwfcw

)
cd w

)
ba w

/
ba w

/
ab

1wafwfcw
/
cd w

)
ba w

/
ba w

/
ab 1wafw

/
cd w

/
dc w

)
ba w

/
ba w

/
ab 1w

/
cd w

/
dc wcfw

)
ba w

/
ba w

/
ab

1w
/
cd w

/
dc wfawcfw

/
ba w

/
ab 1w

/
cd w

/
dc wfaw

)
ab wcfw

)
ba ; (D2)
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FIGURE 11 The full model on the

two-lane lattice. The inset on the top

depicts a cartoon of the experimental

system.

FIGURE 10 The possible states of

the DNA polymerase/exonuclease

model. Each pair of either a, f, or c

states differ by an addition (or removal)

of one base from the dsDNA.
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and

B¼w
/

ab wfawcfw
)

dc w
)

cd1w
)

ab wfawcfw
)

dc w
)

cd1w
)

ab w
)

ba wcfw
)

dc w
)

cd

1w
)

abw
)

bawafw
)

dcw
)

cd1w
)

abw
)

bawafwfcw
)

cd1w
)

abw
)

bawafwfcw
/

cd

1w
)

ab w
)

ba wafw
/

cd w
/

dc1w
)

ab w
)

ba w
/

cd w
/

dc wcf :

(D3)

The effective energy landscape can be inferred by assuming an equilibrium

distribution so that

Paðn12Þ
PaðnÞ

¼ expððEðnÞ�Eðn12ÞÞ=TÞ; (D4)

and the effective energy difference is given by

DE¼ Eðn12Þ�EðnÞ ¼�T ln
Paðn12Þ
PaðnÞ

� �
: (D5)

It is now clear, using Eq. D1 and arguments similar to those in

‘‘Dynamics of Heterogeneous Environments’’ that if the set of rates

becomes site-dependent, a random forcing energy landscape will develop.

The only difference from the simple soluble models studied in the main text

is that the random walker representing the system is moving on a two-lane

lattice. On general grounds (Fisher, 1984), this will not make a difference on

the long timescales and large length scales behavior of the system. Again,

one expects a region when the velocity is anomalous. The expected behavior

of the velocity as a function of the external force F# is sketched in Fig. 12.

Again, we expect that the singularities at F#, and F#. become rounded when

v is defined by a finite experimental time window tE, with a plateau at zero

velocity becoming more and more pronounces as tE / N.
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Jülicher, F., A. Ajdari, and J. Prost. 1997. Modeling molecular motors. Rev.
Mod. Phys. 69:1269–1281.
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